This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

A TRICHLORO-BRIDGED DIRUTHENIUM (II, III) COMPLEX: PREPARATION, PROPERTIES AND X-RAY STRUCTURE OF TRI($-\mu-$ CHLORO) DICHLOROCARBONYLTRIS (TRIPHENYLPHOSPHINE)DIRUTHENIUM(II, III)

Alzir A. Batistaa; Ornella M. Porcua; Otaciro R. Nascimentob; Valma M. Barbosa ${ }^{\text {b }}$; Glaucius Oliva ${ }^{\text {b }}$ ${ }^{\text {a }}$ Departamento de Química, Universidade Federal de So Carlos, So Carlos, Brazil ${ }^{\text {b }}$ Instituto de Física e Química de So Carlos, Universidade de So Paulo, So Carlos, Brazil

To cite this Article Batista, Alzir A. , Porcu, Ornella M. , Nascimento, Otaciro R. , Barbosa, Valma M. and Oliva, Glaucius(1993) 'A TRICHLORO-BRIDGED DIRUTHENIUM (II, III) COMPLEX: PREPARATION, PROPERTIES AND XRAY STRUCTURE OF TRI($-\mu$-CHLORO) DICHLOROCARBONYLTRIS (TRIPHENYLPHOSPHINE)DIRUTHENIUM(II, III)', Journal of Coordination Chemistry, 30: 3, 345 - 355

To link to this Article: DOI: 10.1080/00958979308022768
URL: http://dx.doi.org/10.1080/00958979308022768

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


A TRICHLORO-BRIDGED DIRUTHENIUM (II,III) COMPLEX: PREPARATION, PROPERTIES AND X-RAY STRUCTURE OF TRI($-\mu$-CHLORO) DICHLOROCARBONYLTRIS (TRIPHENYLPHOSPHINE)DIRUTHENIUM(II,III)

ALZIR A. BATISTA,* ORNELLA M. PORCU
Departamento de Química, Universidade Federal de Sâo Carlos, Caixa Postal 676, 13560 São Carlos, Brazil

OTACIRO R. NASCIMENTO, VALMA M. BARBOSA and GLAUCIUS OLIVA

Instituto de Física e Quimica de Sào Carlos, Universidade de São Paulo, Caixa Postal 369, 13560 São Carlos, Brazil
(Received November 3, 1992)

Abstract

The triply chloro-bridged binuclear complex $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2},\left(\mathrm{PPh}_{3}=\right.$ triphenylphosphine), $\mathrm{M}_{\mathrm{r}}=1279.23$, prepared from the precursor compound $\left[\mathrm{RuCl} \mathrm{l}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA}\right] \cdot \mathrm{DMA}$ (DMA $=N, N^{\prime}$-dimethylacetamide) and crystallizes in the monoclinic space group $P 2_{1} / c$. The structure was solved from 6994 independent reflections for which $I>3 \sigma(I)$ by Patterson and difference Fourier techniques and refined to a final $R=0.042$. The complex is formed by two Ru atoms bridged through three chloride anions. One Ru atom is further coordinated to two non-bridging Cl atoms and a triphenylphosphine ligand, whereas the other is bonded to two PPh_{3} ligands and a carbon monoxide molecule. The presence of $\mathrm{Ru}^{\mathrm{III}}$ was confirmed by EPR data. The absence of an intervalence charge-transfer transition (IT) in the near-infrared spectrum suggests that the binuclear complex is of a localized valence type. The IR spectrum shows a $v_{\text {CO }}$ band at $1964 \mathrm{~cm}^{-1}$ and $v_{\mathrm{Ru}-\mathrm{Cl}}$ bands at $328,280 \mathrm{~cm}^{-1}$, corresponding to chlorides at terminal positions and $250,225 \mathrm{~cm}^{-1}$ for the bridged ones. Two redox processes, $R u^{I I} / R u^{I I}\left(E_{1 / 2}=-0.29 \mathrm{~V}\right) \leftarrow R u^{I I} / R u^{I I I} \rightarrow\left(E_{1 / 2}=1.19 \mathrm{~V}\right) R u^{I I I} /$ Ru^{111}, were observed by cyclic voltammetry.

KEYWORDS: Binuclear ruthenium (II,III) complex, triphenylphosphine, carbon monoxide; X-ray structure, spectroscopical measurements, electrochemistry

INTRODUCTION

Since the discovery of the $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}(\mathrm{pz}) \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}$ compound by Creutz and Taube, ${ }^{1}$ extensive studies of mixed-valence ruthenium complexes have been reported. Our previous studies ${ }^{2.3}$ have shown that the reactivity of the precursor

[^0]complex, $\left[\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA}\right] \cdot \mathrm{DMA}$ (1), leads to different products depending on reaction conditions. The title compound, $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was obtained from the reaction of (1) with $\mathrm{CO}(\mathrm{g})$. Stephenson and co-workers ${ }^{4}$ reported analogous species of this complex and from electrochemical studies of the triply-bridged diruthenium complexes having general formula $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5} \mathrm{YL}_{3}\right]$ $\left(\mathrm{L}=\mathrm{P}(n \text {-tol })_{3}, \mathrm{PPh}_{3}\right.$, and $\mathrm{Y}=\mathrm{CO}$ or CS$)$, they proposed, for the carbon monoxide complex, the configuration shown in Figure 1.

Our particular interest in this class of compounds is in the study of the characteristics of the redox potentials of metal ions when they are bound to σ or π ligands, in order to eventually identify the localization of electrons in the metallic centres. This work led to the discovery of a new reaction for the starting material, $\left[\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA}\right] \cdot \mathrm{DMA}$, and this paper describes the synthesis and characterization of the binuclear complex $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

EXPERIMENTAL

General

All solutions were prepared under a pre-purified argon purge and were kept under an argon blanket during the experiments. All solvents were purified following previously described procedures ${ }^{5}$ and stored over Linde $4 \AA$ molecular sieves. Triphenylphosphine (Aldrich) was used as supplied. The primary ruthenium source was $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Degussa S / A). The precursor compound, $\left[\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA}\right] \cdot \mathrm{DMA}$, was prepared as mentioned in the literature. ${ }^{6}$

Tri(- μ-chloro)-dichlorocarbonyltris(triphenylphosphine)-diruthenium(II,III) dichloromethane solvate

The synthesis of the title complex follows the procedure applied by Ruiz-Ramirez et al. ${ }^{7}$ in the preparation of trans- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ from $\left[\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~S}\right]$, where $\mathrm{S}=\mathrm{MeOH}$ or MeNO_{2} : carbon monoxide was bubbled through a suspension of $\left[\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA}\right] \cdot$ DMA $(0.2 \mathrm{~g}-0.22 \mathrm{~mol})$ in $2 \mathrm{~cm}^{3}$ of benzene for 30 min at room temperature. The volume of the resulting brown solution was reduced to $c a$ $0.8 \mathrm{~cm}^{3}$, after which cold, deoxygenated ethanol was added. The yellow resulting solid (yield: 75%) was filtered and thoroughly washed with ethanol, hexane and

Figure 1 Suggested structure for the $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ complex (after Stephenson et al. ${ }^{4}$).
diethyl ether. Recrystallization from dichloromethane/ethanol/diethyl ether produced air-stable, brownish-red crystals. Anal; calc. for $\mathrm{C}_{56} \mathrm{H}_{47} \mathrm{Cl}_{7} \mathrm{OP}_{3} \mathrm{Ru}_{2}$: $\mathrm{C}, 52.58$; H, 3.70\%. Found: C, 53.33 ; H, 3.71 \%.

X-ray diffraction data

A complete data set was collected on an Enraf-Nonius CAD-4 four-circle diffractometer, from a prismatic crystal. Cell dimensions and the orientation matrix were calculated by least-squares methods from 25 centred reflections. Diffraction intensities were measured by the $\omega-2 \theta$ scan technique using a variable scan speed between $6.7-20.0^{\circ} \mathrm{min}^{-1}$ determined by a pre-scan at $20.0^{\circ} \mathrm{min}^{-1}$. The intensity of one standard reflection was essentially constant over the duration of the experiments. Data were corrected for Lorentz, polarization and absorption effects, following the procedure of Walker and Stuart. ${ }^{8}$ Merging of the 9021 intensity measurements resulted in 8752 independent reflections with an internal consistency index $\left(\right.$ Sheldrick 9) $R_{i m i}=0.015$. The 6994 reflections having $I>3 \sigma(I)$ were used for the structure determination and refinement, performed with the SHELX-76 ${ }^{9}$ and MolEN ${ }^{10}$ systems of programs. Bonded H-atom scattering factors (Stewart, Davidson and Simpson ${ }^{11}$) and complex scattering factors (Cromer and Mann; ${ }^{12}$ Cromer and Liberman ${ }^{13}$) for the remaining atoms were employed. The molecular drawing (Figure 2) was produced with the program ORTEP. ${ }^{14}$

Crystal structure determination and refinement

The structure was solved by standard Patterson and difference Fourier techniques and refined by full-matrix least-squares methods. The phenyl rings were treated as rigid groups and all non-hydrogen atoms were refined with anisotropic temperature factors. The phenyl hydrogen atoms were located at calculated positions and

Figure 2 Perspective view of the X-ray structure of the binuclear complex $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, with all phenyl rings and solvated dichloromethane molecule omitted for clarity.
included as fixed contributors, with a common isotropic temperature factor of $5 \AA^{2}$. Absorption corrections were applied following the procedure of Walker and Stuart ${ }^{8}$ with minimum and maximum transmission factors of 0.889 and 1.146 , respectively. The maximum value of Δ / σ in the final refinement cycle was 0.07 . Crystal data and rafinement details are given in Table 1. Atomic coordinates and equivalent isotropic temperature factors for all non-H atoms are given in Table 2. Corresponding interatomic bond distances and angles, excluding those of the phenyl rings which were refined as rigid groups, are given in Table 3. Listings of anisotropic thermal parameters, hydrogen atoms coordinates, bond distances and angles of all phenyl rings and the observed and calculated structure factors are available from the the authors upon request.

Spectroscopic measurements

Pellets were prepared from crystalline powder samples diluted in CsI. IR spectra were performed on a Bomem-Michelson 102 spectrophotometer in the region $4000-200 \mathrm{~cm}^{-1}$. For near-IR spectra, a Cary 2315 spectrophotometer and matched anaerobic quartz cells were employed. The electronic spectrum was measured in CDCl_{3} solution ($2.6 \times 10^{-3} \mathrm{M}$) and recorded on a Cary 2315 spectrophotometer.

Table 1 Crystal data, data collection details and structure refinement results for $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

formula mol wt	$\begin{aligned} & {\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}} \\ & 1279.23 \end{aligned}$
space group	$P 2_{1} / \mathrm{C}$
lattice parameters	
a	14.600(3)
b	18.254(3)
c	20.52(1) \AA
β	99.46 (3) ${ }^{\circ}$
V	5394(5) ${ }_{\text {A }}$
Z	4
D (calc)	$1.575 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
crystal dimensions	$0.12 \times 0.30 \times 0.60 \mathrm{~mm}$
radiation	$\mathrm{MoK} \alpha, \lambda=0.71073 \AA$
T	$25^{\circ} \mathrm{C}$
linear abs coeff (μ)	$9.283 \mathrm{~cm}^{-1}$
scan technique	$\omega-2 \theta$
scan speed range	$6.7-20^{\circ} \mathrm{min}^{-1}$
θ range for data collect	$0-25^{\circ}$
$F(000)$	2548
no. ind. reflns.	8752
no. reflns. above $3 \sigma(I)$	6994
no. refined parameters	514
minimized function	$\Sigma w\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right)^{2}$
weighting scheme	$w=\left[\sigma^{2}\left(\left\|F_{o}\right\|\right)+0.00025\left\|F_{o}\right\|^{2}\right]^{-1}$
$R=\Sigma\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| \Sigma \Sigma\left\|F_{o}\right\|$	0.042
$R_{w}=\left[\Sigma w\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right)^{2} / \Sigma w\left\|F_{o}\right\|^{2}\right]^{1 / 2}$	0.046
$S=\left[\Sigma w\left(\left\|F_{o}\right\|-\left\|F_{o}\right\|\right)^{2} /(M-N)\right]^{1 / 2}$	1.92
$h_{\min }, h_{\max } ; k_{\min }, k_{\max } ; l_{\min }, l_{\max }$	$-17,17 ; 0,21 ; 0,24$
max, min residual ρ	$0.95,-1.14 \mathrm{e}^{\AA^{-3}}$

Table 2 Fractional Atomic Coordinates and Isotropic Temperature Parameters $\left(\AA^{2}\right)$ for $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{CO}^{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Atom	X/A	Y/B	Z/C	$B_{i s o}$	Atom	X/A	Y/B	Z/c	$B_{i s o}$
$\mathrm{Ru}(1)$	$0.13313(3)$	0.10400(2)	0.22552(2)	1.98(1)	C(213)	-0.1435(2)	0.1133(2)	0.3578(2)	3.9(2)
$\mathrm{Ru}(2)$	$0.32507(3)$	0.04848(2)	$0.17373(2)$	$2.29(1)$	C(214)	-0.1379(2)	0.0936(2)	0.4241(2)	$4.4(2)$
$\mathrm{Cl}(1)$	$0.1635(1)$	0.0642(1)	$0.1165(1)$	2.73(4)	C(215)	-0.0514(2)	$0.0833(2)$	0.4634(2)	4.3(2)
C1(2)	$0.2387(1)$	-0.0015(1)	0.2559(1)	2.94(4)	C(216)	0.0295(2)	$0.0925(2)$	$0.4364(2)$	$3.6(2)$
C1(3)	$0.2873(1)$	$0.1616(1)$	0.2285(1)	2.61 (4)	C(221)	$0.1517(3)$	$0.2288(2)$	$0.3636(2)$	$3.2(2)$
C1(4)	$0.3761(1)$	$0.1199(1)$	0.0890(1)	7.07(8)	C(222)	$0.1124(3)$	0.2551(2)	$0.4165(2)$	$4.5(2)$
$\mathrm{Cl}(5)$	0.3350(2)	-0.0712(2)	$0.1261(1)$	$9.1(1)$	C(223)	$0.1265(3)$	0.3277(2)	$0.4366(2)$	6.2 (3)
$\mathrm{P}(1)$	$0.0414(1)$	$0.1991(1)$	$0.1701(1)$	2.26 (4)	C(224)	$0.1800(3)$	$0.3741(2)$	$0.4038(2)$	8.4(4)
$\mathrm{P}(2)$	$0.1297(1)$	$0.1341(1)$	$0.3363(1)$	2.44(4)	C(225)	0.2194(3)	0.3478(2)	0.3510(2)	$9.7(5)$
$\mathrm{P}(3)$	$0.4757(1)$	0.0335 (1)	$0.2255(1)$	2.81 (4)	C(226)	$0.2052(3)$	$0.2752(2)$	$0.3309(2)$	$6.1(3)$
C(1)	0.0333(4)	0.0444(3)	0.2249(3)	2.8(2)	C(231)	$0.2184(3)$	0.0823(2)	0.3900(2)	3.5(2)
$\mathrm{O}(1)$	-0.0252(3)	0.0019(2)	0.2259(2)	4.6(2)	C(232)	0.2040 (3)	$0.0080(2)$	0.4010(2)	4.8(2)
Cl(6)	$0.6524(3)$	0.2336(2)	0.0359(2)	13.5(2)	C(233)	$0.2721(3)$	-0.0328(2)	$0.4411(2)$	7.2(4)
Cl(7)	0.4654(3)	0.2320(3)	-0.0323(2)	18.7(3)	C(234)	$0.3546(3)$	$0.0006(2)$	0.4701(2)	8.0 (4)
C(2)	$0.5539(7)$	$0.1781(6)$	0.0052(7)	$11.2(5)$	C(235)	0.3690 (3)	$0.0749(2)$	$0.4591(2)$	7.8(4)
$\mathrm{C}(111)$	-0.0234(2)	$0.1708(2)$	0.0890(1)	$2.7(2)$	C(236)	0.3009(3)	$0.1157(2)$	0.4191(2)	5.3(3)
C(112)	-0.0466(2)	0.0979(2)	0.0745(1)	$3.2(2)$	C(311)	$0.5235(3)$	$0.1057(2)$	0.2828(2)	$3.2(2)$
C(113)	-0.0976(2)	$0.0796(2)$	0.0132(1)	$4.1(2)$	C(312)	$0.5221(3)$	$0.1767(2)$	0.2572(2)	4.0 (2)
C(114)	-0.1255(2)	0.1342 (2)	-0.0336(1)	$5.2(3)$	C(313)	$0.5670(3)$	$0.2332(2)$	$0.2954(2)$	4.7(2)
C(115)	-0.1024(2)	$0.2072(2)$	-0.0191(1)	$5.2(3)$	C(314)	$0.6133(3)$	$0.2188(2)$	0.3592(2)	5.1(3)
C(116)	-0.0513(2)	$0.2255(2)$	0.0423 (1)	3.9(2)	C(315)	$0.6146(3)$	$0.1479(2)$	$0.3848(2)$	$5.5(3)$
C(121)	-0.0520(2)	$0.2421(2)$	0.2069(2)	2.8(2)	C(316)	$0.5697(3)$	0.0913(2)	0.3466 (2)	4.4(2)
C(122)	-0.0312(2)	$0.2891(2)$	$0.2606(2)$	3.6 (2)	C(321)	$0.5003(3)$	-0.0502(2)	$0.2738(2)$	3.3(2)
C(123)	-0.1028(2)	0.3200 (2)	0.2889 (2)	4.6 (2)	C(322)	$0.5725(3)$	-0.0970(2)	0.2644 (2)	4.2 (2)
C(124)	-0.1950(2)	$0.3037(2)$	$0.2634(2)$	5.6 (3)	C(323)	0.5927 (3)	-0.1585(2)	0.3047(2)	5.4 (3)
C(125)	-0.2158(2)	0.2567 (2)	0.2096 (2)	5.3 (3)	C(324)	$0.5407(3)$	-0.1732(2)	$0.3545(2)$	5.3 (3)
C(126)	-0.1443(2)	$0.2258(2)$	$0.1814(2)$	$3.9(2)$	C(325)	$0.4685(3)$	-0.1264(2)	0.3640 (2)	5.3 (3)
C(131)	$0.1084(2)$	0.2762 (2)	$0.1448(2)$	$3.0(2)$	C(326)	$0.4483(3)$	-0.0649(2)	$0.3236(2)$	4.3 (2)
C(132)	$0.1731(2)$	0.2598(2)	0.1040 (2)	$3.5(2)$	C(331)	0.5620(3)	0.0303(2)	$0.1695(2)$	3.6(2)
C(133)	$0.2205(2)$	$0.3161(2)$	0.0776(2)	4.5(2)	C(332)	$0.6488(3)$	0.0628(2)	0.1882(2)	$7.8(4)$
C(134)	$0.2031(2)$	0.3889(2)	$0.0921(2)$	5.3 (3)	C(333)	$0.7137(3)$	0.0617(2)	0.1453(2)	10.0(5)
C(135)	$0.1384(2)$	0.4054(2)	0.1329(2)	$5.7(3)$	C(334)	$0.6918(3)$	0.0281(2)	$0.0838(2)$	$7.9(4)$
C(136)	$0.0911(2)$	0.3490 (2)	0.1593(2)	4.2 (2)	C(335)	0.6050(3)	-0.0044(2)	0.0651(2)	7.6(4)
C(211)	$0.0239(2)$	$0.1121(2)$	0.3701(2)	$2.7(2)$	C(336)	0.5401(3)	-0.0033(2)	0.1080(2)	6.2 (3)
C(212)	-0.0626(2)	0.1225(2)	0.3308(2)	3.1(2)					

Table 3 Interatomic bond distances (\AA) and angles (${ }^{\circ}$) for $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, for all atoms excluding phenyl rings of PPh_{3}, which were refined as rigid groups.

(a) Bond distances							
Ru(1)		$-\mathrm{Cl}(1)$	$2.461(2)$	$\mathrm{P}(1)$	- C(111)		8(3)
$\mathrm{Ru}(1)$		$-\mathrm{Cl}(2)$	2.482(2)	$\mathrm{P}(1)$	- C(121)		40(4)
Ru(1)		- $\mathrm{Cl}(3)$	2.476 (2)	$\mathrm{P}(1)$	- C(131)		83(4)
$\mathrm{Ru}(1)$		- P(1)	2.366 (2)	$\mathrm{P}(2)$	- C(211)		839(4)
$\mathrm{Ru}(1)$		$-\mathrm{P}(2)$	$2.348(2)$	$\mathrm{P}(2)$	- C(221)		829(4)
$\mathrm{Ru}(1)$		- C(1)	$1.817(6)$	$\mathrm{P}(2)$	- C(231)		81(5)
$\mathrm{Ru}(2)$		$-\mathrm{Cl}(1)$	2.473(2)	$\mathrm{P}(3)$	- C(311)		27(4)
$\mathrm{Ru}(2)$		$-\mathrm{Cl}(2)$	2.443(2)	$\mathrm{P}(3)$	- C(321)		24(4)
Ru(2)		- $\mathrm{Cl}(3)$	2.457(2)	$\mathrm{P}(3)$	- C(331)		41(5)
Ru(2)		- $\mathrm{Cl}(4)$	$2.388(2)$	$\mathrm{C}(1)$	- O(1)		7(7)
$\mathrm{Ru}(2)$		- $\mathrm{Cl}(5)$	2.407(4)	$\mathrm{Cl}(6)$	- C(2)		(1)
Ru(2)		- P(3)	$2.296(2)$	$\mathrm{Cl}(7)$	- C(2)		(1)
(b) Bond angles							
$\mathrm{Cl}(1)$	- Ru(1)	- $\mathrm{Cl}(2)$	78.57(6)	$\mathrm{Ru}(1)$	- P(2)	- C(211)	117.9(1)
$\mathrm{Cl}(1)$	- Ru(1)	$-\mathrm{Cl}(3)$	$81.30(6)$	$\mathrm{Ru}(1)$	- P(2)	- C(221)	$119.2(2)$
$\mathrm{Cl}(1)$	- Ru(1)	- P(1)	87.26 (6)	$\mathrm{Ru}(1)$	- P(2)	- C(231)	109.8(2)
$\mathrm{Cl}(1)$	- Ru(1)	- P(2)	$170.14(6)$	$\mathrm{Ru}(2)$	- P(3)	- C(311)	116.6(2)
$\mathrm{Cl}(1)$	- Ru(1)	- C(1)	94.7(2)	$\mathrm{Ru}(2)$	-P(3)	- C(321)	116.1(2)
$\mathrm{Cl}(2)$	- Ru(1)	- $\mathrm{Cl}(3)$	$78.38(6)$	$\mathrm{Ru}(2)$	- P(3)	- C(331)	114.6(2)
$\mathrm{Cl}(2)$	- Ru(1)	- P(1)	165.75 (6)	$\mathrm{Ru}(1)$	- C(1)	- $\mathrm{O}(1)$	174.5(5)
$\mathrm{Cl}(2)$	- Ru(1)	$-\mathrm{P}(2)$	92.83 (6)	C(111)	$-\mathrm{P}(1)$	- C(121)	100.6(2)
$\mathrm{Cl}(2)$	- Ru(1)	- C(1)	90.1 (2)	C(111)	-P(1)	- C(131)	100.2(2)
$\mathrm{Cl}(3)$	- Ru(1)	- P(1)	98.09 (6)	C(121)	- P(1)	- C(131)	104.7(2)
$\mathrm{Cl}(3)$	- Ru(1)	- P(2)	$92.32(6)$	$\mathrm{C}(211)$	- P(2)	- C(221)	101.9(2)
$\mathrm{Cl}(3)$	- Ru(1)	- C(1)	168.3(2)	C(211)	- P(2)	- C(231)	102.5(2)
$\mathrm{P}(1)$	- Ru(1)	- P(2)	101.14(6)	C(221)	- P(2)	- C(231)	103.5(2)
$\mathrm{P}(1)$	- Ru(1)	- C(1)	92.7(2)	C(311)	$-\mathrm{P}(3)$	- C(321)	103.5(2)
$\mathrm{P}(2)$	- Ru(1)	- C(1)	90.1(2)	C(311)	- P(3)	- C(331)	101.3(2)
$\mathrm{Cl}(1)$	- Ru(2)	- $\mathrm{Cl}(2)$	79.07(6)	C(321)	$-\mathrm{P}(3)$	- C(331)	102.6(2)
$\mathrm{Cl}(1)$	- Ru(2)	- $\mathrm{Cl}(3)$	$81.45(6)$	$\mathrm{Cl}(6)$	- C(2)	$-\mathrm{Cl}(7)$	109.8(7)
$\mathrm{Cl}(1)$	- Ru(2)	- $\mathrm{Cl}(4)$	88.78(6)	$\mathrm{P}(1)$	- C(111)	- C(112)	122.0(2)
$\mathrm{Cl}(1)$	- Ru(2)	$-\mathrm{Cl}(5)$	$91.65(8)$	$\mathrm{P}(1)$	- C(111)	- C(116)	117.8 (2)
$\mathrm{Cl}(1)$	- Ru(2)	$-\mathrm{P}(3)$	179.24(6)	$\mathrm{P}(1)$	- C(121)	- C(122)	120.6(3)
$\mathrm{Cl}(2)$	- Ru(2)	- $\mathrm{Cl}(3)$	79.48 (6)	$\mathrm{P}(1)$	- C(121)	- C(126)	119.4(3)
$\mathrm{Cl}(2)$	- Ru(2)	- $\mathrm{Cl}(4)$	$164.76(6)$	$\mathrm{P}(1)$	- C(131)	- C(132)	116.8(3)
$\mathrm{Cl}(2)$	- Ru(2)	- $\mathrm{Cl}(5)$	$90.77(8)$	$\mathrm{P}(1)$	- C(131)	- C(136)	123.1(3)
$\mathrm{Cl}(2)$	- Ru(2)	- P(3)	101.52(6)	$\mathrm{P}(2)$	- C(211)	- C(212)	119.3(3)
$\mathrm{Cl}(3)$	- Ru(2)	- $\mathrm{Cl}(4)$	89.71(6)	P (2)	- C(211)	- C(216)	120.4(3)
$\mathrm{Cl}(3)$	- Ru(2)	$-\mathrm{Cl}(5)$	168.94(8)	$\mathrm{P}(2)$	- C(221)	- C(222)	119.3(3)
$\mathrm{Cl}(3)$	- Ru(2)	- P(3)	99.12(6)	$\mathrm{P}(2)$	- C(221)	- C(226)	$120.7(3)$
$\mathrm{Cl}(4)$	- Ru(2)	- $\mathrm{Cl}(5)$	98.82(8)	$\mathrm{P}(2)$	- C(231)	- C(232)	119.4(3)
$\mathrm{Cl}(4)$	- Ru(2)	- P(3)	90.72(6)	$\mathrm{P}(2)$	- C(231)	- C(236)	120.7(3)
$\mathrm{Cl}(5)$	- Ru(2)	$-\mathrm{P}(3)$	87.87(8)	$\mathrm{P}(3)$	- C(311)	- C(312)	$116.5(3)$
$\mathrm{Ru}(1)$	- $\mathrm{Cl}(1)$	- Ru(2)	84.46(6)	$\mathrm{P}(3)$	- C(311)	- C(316)	122.9(3)
$\mathrm{Ru}(1)$	- $\mathrm{Cl}(2)$	- $\mathrm{Ru}(2)$	84.64(6)	$\mathrm{P}(3)$	- C(321)	- C(322)	121.6(3)
$\mathrm{Ru}(1)$	- $\mathrm{Cl}(3)$	- Ru(2)	84.47(6)	$\mathrm{P}(3)$	- C(321)	- C(326)	118.5(3)
$\mathrm{Ru}(1)$	- P(1)	- C(111)	$113.1(1)$	$\mathrm{P}(3)$	- C(331)	- C(332)	119.9(3)
$\mathrm{Ru}(1)$	- P(1)	- C(121)	121.0(1)	$P(3)$	- C(331)	- C(336)	120.1(3)
$\mathrm{Ru}(1)$	- P(1)	- C(131)	114.4(1)				

The EPR spectrum was obtained from a polycrystalline powder sample, using a quartz tube, on a Varian E-109 spectrometer equipped with a Q-band bridge at liquid nitrogen temperature (77 K). Conditions are described in Figure 3.

Cyclic voltammetry

The cyclic voltammogram was recorded at $25.0 \pm 0.1^{\circ} \mathrm{C}$ in freshly distilled dichloromethane with 0.1 M tetrabutylammonium perchlorate (TBAP) using an EG and PAR electrochemical system with a 175 Universal Programmer. A three electrode system consisting of platinum working and auxiliary electrodes and a reference electrode $(\mathrm{Ag} / \mathrm{AgCl})$ with a Luggin-Haber containing salt bridge, filled with the solvent and supporting electrolyte (TBPA) was employed. The ferrocenium $\left(\mathrm{Fc}^{+}\right) /$ferrocene (Fc) couple, at 0.50 V , was employed as reference.

Elemental analysis

Microanalysis was performed on crystalline samples (Microanalyses Laboratory of the Universidade de São Paulo - Instituto de Química).

Figure 3 EPR spectrum of the binuclear complex $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ measured at 77 K . The stick diagram shows the hyperfine splitting in the low field region due to the phosphorous nuclear spin $(I=1 / 2)$ interaction. The splitting of g_{3} was obtained with 5 G field modulation and 12 db microwave power.

Electrical conductivity

Solution electrical conductivities were measured at $25^{\circ} \mathrm{C}$ under anaerobic conditions using a Micronal B-330 conductivity bridge with platinum electrodes.

${ }^{1} H$ NMR spectrum

This was measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ on a Bruker AC - 200 spectrophotometer.

RESULTS AND DISCUSSION

The IR spectrum of the yellow solid obtained in the initial step of the synthesis shows a strong v_{cO} stretch at $1997 \mathrm{~cm}^{-1}$ and a band at $1600 \mathrm{~cm}^{-1}$ assigned to coordinated DMA. This observation, together with the microanalysis of this solid which confirms the presence of nitrogen in the sample, suggests that during the reaction part of the starting material was reduced to $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (which shows the v_{CO} band near $1997 \mathrm{~cm}^{-17,15}$) and during the subsequent recrystallization process the following reaction occurs,

$$
\begin{align*}
\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} & +\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA} \\
& +\mathrm{PPh}_{3}+\mathrm{DMA}+\mathrm{CO} \tag{1}
\end{align*}
$$

producing the insoluble mixed-valence complex containing three bridging chloride ligands. This reaction pathway is consistent with the easy dissociation of the carbon monoxide ligand from $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{15,16}$ and is further supported by the ${ }^{1} \mathrm{H} N M R$ spectrum of free triphenylphosphine, isolated from the filtrate after removal of the red-brown crystals. To confirm the above mechanism of formation of the bridged compound, reaction (1) was reproduced from the previously purified reagents: pure $t t t$-isomer $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was added to [$\left.\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA}\right] \cdot$ DMA previously dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c a 1: 1)$ and to this solution was added ethanol and ether (to reproduce the solution used for recrystallisation described in the experimental part). After one night the red crystals formed were collected and characterized by IR and microanalysis (carbon and hydrogen) which indicated the same compound as that obtained through the direct reaction of $\left[\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{DMA}\right] \cdot$ DMA with carbon monoxide, followed by recrystallization.

X-ray diffaction studies showed that the $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ complex crystallizes as a dichloromethane solvate, consisting of two ruthenium centres with distorted octahedral coordination and with an asymmetric configuration, joined through three bridging chloride atoms. Figure 2 is a schematic drawing of the complex showing the labelling of several non-H atoms. Reported ruthenium(II)phosphorus distances typically span the range $2.32-2.44 \AA$, depending on the σ or π acidity of the trans ligand. ${ }^{17,18}$ The $\mathrm{Ru}(1)-\mathrm{P}(1)$ and $\mathrm{Ru}(1)-\mathrm{P}(2)$ bond distances, both trans to bridge chlorides, are $2.366(2)$ and $2.348(2) \AA$, respectively. The shorter distance found for $\mathrm{Ru}(2)-\mathrm{P}(3)$ [2.296(2) \AA], which is also trans to a bridge chloride, suggests that the $\mathrm{Ru}(2)$ centre is a $\mathrm{Ru}^{\text {III }}$ ion, whereas the $\mathrm{Ru}(1)$ is probably $\mathrm{Ru}^{\text {II }}$. The bridging chlorides that are trans to triphenylphosphine and carbon monoxide ligands show slightly longer $\mathrm{Ru}-\mathrm{Cl}$ distances $[2.461(2) \AA, 2.473(2) \AA, 2.476(2)$ and $2.482(2) \AA$] when compared to those of the bridging chlorides that are trans to the
non-bridging chloride atoms [2.443(2) \AA and $2.457(2) \AA$]. This effect is probably due to the weaker trans influence of the chloro ligands when compared with triphenylphosphine and carbon monoxide ligands. The $\mathrm{Ru}-\mathrm{P}$ and $\mathrm{Ru}-\mathrm{Cl}$ bondlengths and $\mathrm{Ru}-\mu \mathrm{Cl}-\mathrm{Ru}$ angles are comparable to those found in other reported binuclear bridged ruthenium complexes. ${ }^{19,20,21,22}$ In our complex the $\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}$ bridging angle is on average 84.5° and hence the ruthenium atoms are further apart than they would be in a regular cofacial bioctahedron (two regular octaedra sharing one face have a bridging angle $\alpha=70.5^{\circ}{ }^{19}$) and the distance between the ruthenium centres found here $[3.315(6) \AA$] is significantly longer than the distance of $3.115 \AA$ in $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left[\mathrm{P}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right]_{4}{ }^{20}$ and $3.251(1) \AA$ in $\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\text { chiraphos })_{2},{ }^{6}$ and well outside the range $2.28-2.95 \AA$ usually found for a $\mathrm{Ru}-\mathrm{Ru}$ bond. ${ }^{23.24,25}$

The infrared spectrum of the title complex shows, in the carbonyl region, only one band at $1964 \mathrm{~cm}^{-1}$ corresponding to the CO stretch. The shift of the v_{CO} band towards lower frequencies has been reported for a variety of $\mathrm{Ru}(\mathrm{II})$ species ${ }^{15,22,26}$ and indicates strong metal-CO back bonding. ${ }^{27}$ The IR spectrum also shows bands at 328 and $280 \mathrm{~cm}^{-1}$, characteristic of terminal chlorides, and bands at 250 and $225 \mathrm{~cm}^{-1}$ which can be associated with the streching of the chloro-bridge ligands. ${ }^{7}$ Characteristic vibrations of P-C (aromatic) stretching are observed at 746, 696 and $518 \mathrm{~cm}^{-1}$. ${ }^{28,29}$

The presence of both $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Ru}^{\text {III }}$ species in the present binuclear complex is confirmed by the EPR spectrum measured at 35 GHz (Figure 3), which is characteristic of a magnetically isolated $\mathrm{Ru}^{\text {III }}$ ion. The EPR signal must be completely different in the case of an intermetallic interaction with consequent delocalization of the unpaired electron over the two Ru ions. On the other hand, for a hypothesis of both ions being $\mathrm{Ru}^{\text {III }}$, spin-spin coupling would be expected to give again a different signal or even no signal due to antiferromagnetic coupling. By simulation of the powder spectrum data the three g-tensor values were calculated $\left(g_{1}=2.4600, g_{2}=2.4120, g_{3}=2.0485\right)$. The difference between g_{1} and g_{2} suggests a small rhombic distortion around the $\mathrm{Ru}^{\mathrm{III}}$ centre, compatible with the X -ray structure. The splitting observed in the low field region of the spectrum indicates a hyperfine interaction due to the presence of one phosphorus (nuclear spin 1/2). The hyperfine A-tensor was calculated as $\mathrm{A}_{1}=81.4 \mathrm{G} ; \quad \mathrm{A}_{2}=88.9 \mathrm{G} ; \mathrm{A}_{3}=35.0 \mathrm{G}$, showing that the $\mathrm{Ru}^{\text {III }}$ species is effectively coordinated to a single phosphorus atom.

In CDCl_{3}, the electronic spectrum of the complex shows three bands: 287 nm $\left(\varepsilon=688 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 401 \mathrm{~nm}\left(\varepsilon=261 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $481 \mathrm{~nm}\left(\varepsilon=165 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. The complexes $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CORuCl}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$, $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CSRuCl} \mathrm{l}_{3} \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$ and $\left[\left(\mathrm{Ptol}_{3}\right)_{2} \mathrm{CORuCl}_{3} \mathrm{RuCl}\left(\mathrm{Ptol}_{3}\right)_{2}\right]^{+}$which have intervalence charge transfer bands at $675 \mathrm{~nm}\left(\varepsilon \mathrm{ca} 100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ exhibit a small degree of delocalisation. ${ }^{30}$ This was attributed to the influence of π-acid ligands like CO and CS which reduce the tendency to delocalisation of charges and when asymmetrically located, these ligands shift the transition to higher energies. ${ }^{30}$ It is therefore possible to suggest that one of the bands present in the spectrum of our complex, probably the one at 481 nm , can be assigned to an intervalence charge transfer. The spectroscopic characteristics of the present complex suggest it to be of Class I type, within the classification of Robin and Day, ${ }^{31}$ with completely localized charges.

A millimolar solution of the title complex was prepared in deoxygenated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the conductivity data indicated that the diruthenium complex is not an electrolyte ($1.0 \times 10^{-3} \mathrm{M} ; \Omega_{\mathrm{M}}=0.03 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$). Electrochemical studies of
the complex show two redox processes corresponding to the reduction of the compound to $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]^{-}$and its oxidation to $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}$. These results suggest that the "soft" $R u^{11}$ is oxidized in a high anodic region ($\mathrm{E}_{1 / 2}=1.19 \mathrm{~V}$) generating a $\mathrm{Ru}^{\mathrm{III}} / \mathrm{Ru}^{\mathrm{III}}$ species. Similarly, the $\mathrm{Ru}^{\mathrm{II}}$ in $\left[\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3} \mathrm{RuCl}_{3} \mathrm{Ru}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right]^{2+}$ complex is oxidized at the same potential. ${ }^{30}$ The inequivalence of intensities of the redox couple in this process (Figure 4) also indicates that the triphenylphosphine ligand coordinated to the metal is oxidized near to the oxidation potential of the Ru^{11} centre. Free triphenylphosphine is irreversiblely oxidized at $0.78 \mathrm{~V} .{ }^{32}$ The reversible reduction observed at $\mathrm{E}_{1 / 2}=-0.29 \mathrm{~V}$ (II,II $\leftarrow \mathrm{II}, \mathrm{III}$) for the species synthesized in this work is much smaller than the isomer form shown in Figure $1\left(\mathrm{E}_{1 / 2}=0.03 \mathrm{~V}\right)$. This is in accordance to the fact that the chloride ions stabilize better the Ru^{111} system than π-acceptor ligands.

Acknowledgements

We are grateful to the $\mathrm{CNP}_{\mathrm{q}}$, CAPES, FINEP and FAPESP for financial support.

Figure 4 Cyclic voltammogram of $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (scan speed $10 \mathrm{mV} \mathrm{s}^{-1}$).

References

C. Creutz and H. Taube, J. Am. Chem. Soc., 91, 3988 (1969).
2. E.A. Polato, MSc Dissertation, Universidade Federal de Sào Carlos (1990).
3. O.M. Porcu, MSc Dissertation, Universidade Federal de São Carlos (1991).
4. T. Arthur, R, Contreras, G.A. Heath, G. Hefter, A.J. Lindsay, D.J.A. Riach and T.A. Stephenson, J. Organomet. Chem., 179, C49 (1979).
5. D.D Perrin, W.L.F. Amarego and D.R. Perrin, Purification of Laboratory Chemicals (Pergamon Press Inc., New York, 1980), Second Edition.
6. I.S. Thorburn, S.J. Rettig and B.R. James, Invrg. Chem., 25, 234 (1986).
7. L. Ruiz-Ramirez, T.A. Stephenson and E.S. Switkes, J. Chem. Soc., Dallon Trans., 1770 (1973).
8. N. Walker and D. Stuart, Acta Cryst., A158, A39 (1983).
9. G.M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, (University of Cambridge, Cambride, 1976).
10. MolEN, Structure Determination System, (Enraf-Nonius, Delft, The Netherlands (1990).
11. R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys., 42, 3175 (1965).
12. D.T. Cromer and J.B. Mann, Acta Cryst., A24, 321 (1968).
13. D.T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970).
14. C.K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tennessec, USA (1965).
15. B.R. James, L.D. Markham, B.C. Hui and G.L. Rempel, J. Chem. Soc., Dalton Trans., 2247 (1973).
16. J. Chatt, B.I. Shaw and A.E. Field, J. Chem. Soc., 3466 (1964).
17. S.R. Fletcher and A.C. Skapski, J. Chem. Soc., Dalton Trans., 635 (1972).
18. R.R. Gagné, C.A. Koval and G.C. Lisensky, Inorg. Chem., 192854 (1980).
19. G. Chioccola and J.J. Daly, J. Chem. Soc. (A), 8, 1981 (1968).
20. G. Chioccola, J.J. Daly and J.K. Nicholson, Angew. Chem., Int. Ed. (Engl.), 7, 131 (1968).
21. N.W. Alcok and K.A. Raspin, J. Chem. Soc. (A), 9, 2108 (1968).
22. E.A. Seddon and K.R. Seddon, The Chemistry of Ruthenium, (Elsevier, New York, 1984).
23. T.W. Dekleva, I.S. Thorburn and B.R. James, Inorg. Chim. Acta, 100, 49 (1985).
24. B.M. Mattson, J.R. Heiman and L.H. Pignolet Inorg. Chem., 15, 564 (1976) and references therein.
25. H. Schummann, J. Opitz and J. Pickardt, J. Organomet. Chem., 128, 253 (1977).
26. J.P. Collman, C.E. Barnes, P.N. Swepston and J.A. Ibers, J. Am. Chem. Soc., 106, 3500 (1984).
27. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, (Wiley Interscience, Ncw York, 1978), Third Edition.
28. M.M.T. Khan and K.V. Reddy, J. Coord. Chem., 12, 71 (1982).
29. R.K. Poddar and U. Agarwala, J. Inorg. Nucl. Chem., 35, 567 (1973).
30. G.A. Heath, A.J. Lindsay, T.A. Stephenson and D.K. Vattis, J. Organomet. Chem., 233, 353 (1982).
31. M.B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 10, 248 (1967).
32. G. Schiavon, S. Zechin and G. Cogoni, Electroanalyt. Chem. Interfacial Electrochem., 48, 425 (1973).

[^0]: * Author for correspondence.

